Note

MRC

Structures of new secofriedelane and friedelane acids from *Calophyllum inophyllum* of French Polynesia

F. Laure,¹ G. Herbette,² R. Faure,³* J.P. Bianchini,¹ P. Raharivelomanana¹ and B. Fogliani⁴

¹ Laboratoire de Chimie Analytique Appliquée, Université de la Polynésie Française, BP 6570, 98702 Faaa, Tahiti, French Polynesia

² Centre Régional de RMN, Faculté des Sciences et Techniques de Saint-Jérôme, Université d'Aix-Marseille III, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

³ Laboratoire de Valorisation de la Chimie Fine, UMR 6178, Faculté des Sciences et Techniques de Saint-Jérôme, Université d'Aix-Marseille III, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France

⁴ Laboratoire de Biologie et Physiologie Végétales Appliquées, Université de la Nouvelle-Calédonie, BP 4477, 98847 Nouméa, New Caledonia

Received 5 April 2004; Revised 16 June 2004; Accepted 23 June 2004

Three new friedelane-type triterpenoids, 3,4-secofriedelan-3,28-dioic acid (1), 27-hydroxyacetate canophyllic acid (2) and 3-oxo-27-hydroxyacetate friedelan-28-oic acid (3), were isolated from the leaves of *Calophyllum inophyllum* (Clusiaceae) grown in French Polynesia. Their structures were established by the concerted application of 2D NMR techniques including gs-COSY, gs-HMQC and gs-HMBC. Copyright © 2004 John Wiley & Sons, Ltd.

KEYWORDS: NMR; ¹H NMR; ¹³C NMR; COSY; HMQC; HMBC; *Calophyllum inophyllum*; Clusiaceae; friedelane; 3,4-secofriedelane; triterpene

INTRODUCTION

The genus Calophyllum, belonging to the Clusiaceae family, contains many species of evergreen trees widespread in the tropical regions of Asia, America and Africa.¹ Calophyllum inophyllum, one of the most abundant of this genus, locally called 'Tamanu' in French Polynesia, having a sacred symbol for the Polynesian culture, was used as a common ingredient in traditional folk medicine.² Moreover, plants from the genus Calophyllum are known as a source of friedelane triterpenes.³ As a part of phytochemical investigation of C. inophyllum collected in French Polynesia, we report the occurrence of three new friedelane-type triterpenoids isolated from the ethyl acetate extract of the leaves of C. inophyllum: 3,4-secofriedelan-3,28-dioic acid (1), 27-hydroxyacetate canophyllic acid (2) and 3-oxo-27hydroxyacetate friedelan-28-oic acid (3) (Scheme 1). Their structures were established by the concerted application of 2D NMR experiments (gs-COSY, gs-HMQC and gs-HMBC).

Normandie-Niemen, 13397 Marseille Cedex 20, France.

EXPERIMENTAL

General procedures

Melting-points (uncorrected) were obtained on a Electrothermal IA 9100 system. IR spectra were obtained with KBr discs using a Jasco FT/IR-460 Plus spectrometer. HPLC was performed using an HP 1100 pump with a Varian Dynamax Si column (250×21.4 mm i.d., film thickness 5 µm), a refractometric detector and a solvent flow-rate of 10 ml min⁻¹ (isocratic conditions). Mass spectra were measured on a Sciex (Thornill, ON, Canada) API III Plus triple-quadrupole mass spectrometer equipped with an atmospheric pressure ionization (API) source, via an ionspray interface.

NMR spectra

NMR spectra were recorded in CD₃OD solutions at 300 K using a Bruker Avance DRX 500 spectrometer equipped with a Bruker CryoPlatform and a 5mm cryo TXI probe. The temperature of the probe and preamplifier was 30 K. Chemical shifts were referenced to CD₃OD: $\delta_{\rm H} = 3.31$ ppm, $\delta_{\rm C} = 49.0$ ppm.⁴ Resonance multiplicities for ¹³C signals were established via the acquisition of DEPT spectra. For two-dimensional experiments, Bruker microprograms using gradient selection (gs) were applied.

gs-COSY spectra⁵ were obtained with an F_2 spectral width of 10 ppm and 2 K data points and an F_1 spectral width of 256 t_1 increments with sine-bell windows in both dimensions. The gs-HMQC spectra⁶ resulted from

^{*}Correspondence to: R. Faure, Laboratoire de Valorisation de la Chimie Fine, Faculté des Sciences et Techniques de Saint-Jérôme, Université d'Aix-Marseille III, Avenue Escadrille

E-mail: robert.faure@univ.u-3mrs.fr

Contract/grant sponsor: Ministère de la Recherche de la Polynésie Française.

Scheme 1. Structures of triterpenes 1–3.

 256×1024 data matrix size with 2–16 scans per t_1 depending on the sample concentration, an inter-pulse delay of 3.2 ms and a 5:3:4 gradient combination. gs-HMBC spectra⁷ were measured using a pulse sequence optimized for 10 Hz (interpulse delay for the evolution of long-range couplings 50 ms) and the same gradient ratios.

Plant material

Leaves of *C. inophyllum* were collected on Tahiti and Moorea islands, French Polynesia, in November 2001. A voucher specimen (collection FL 11/2001) was deposited at the herbarium of the University of French Polynesia.

Extraction and isolation

The air-dried leaves of *C. inophyllum* (2 kg) were successively extracted with hexane, AcOEt and MeOH in a Soxhlet apparatus. The soluble part of the AcOEt extract in CH_2Cl_2 gave a dark-green wax (104 g). This fraction was submitted to flash chromatography on silica gel (240–300 mesh) with hexane, AcOEt and MeOH as solvents. Early fractions eluted with hexane yielded four known friedelanes: friedelin (4),^{8,9} canophyllol (5),⁸ canophyllol acetate (6)¹⁰ and canophyllic acid (7).^{11,12}

The fraction eluted with AcOEt (28 g) was submitted to medium-pressure liquid chromatography on silica gel using a stepwise gradient from a mixture of hexane–AcOEt (85:15) to AcOEt, yielding 150 fractions. Fractions having similar R_f values on silica gel TLC [hexane–acetone (60:40)] were combined and gave 11 fractions. Fractions 1 and 2

were further chromatographed by HPLC using a Varian Dynamax Si column ($250 \times 21.4 \text{ mm i.d.}$, film thickness 5 µm) with isooctane–AcOEt (80:20) as eluent under isocratic conditions. Three fractions (A, B and C) were obtained from this chromatographic technique. Each fraction was further purified by preparative silica gel TLC [hexane–dioxane (60:40)] to yield **1** (3 mg), **2** (5 mg) and **3** (2 mg).

3,4-Secofriedelan-3,28-dioic acid (1): $C_{30}H_{50}O_4$, amorphous powder, m.p. 292–294 °C, $[\alpha]_D^{25}$ +13 (*c* 0.65, MeOH); ESI (positive ion) MS, m/z [M + H]⁺ (475), [M + NH₄]⁺ (492), [M + Na]⁺ (497), [M + K]⁺ (513); IR, ν_{max} (cm⁻¹) (KBr) 3448, 2938, 1699, 1456, 1224.

27-Hydroxyacetate canophyllic acid (**2**): $C_{32}H_{52}O_5$, amorphous powder, m.p. 238–241 °C, $[\alpha]_D^{22}$ +18 (*c* 0.54, MeOH); ESI (positive ion) MS, m/z [M + H]⁺ (517), [M + NH₄]⁺ (534), [M + Na]⁺ (539), [M + K]⁺ (555); IR, ν_{max} (cm⁻¹) (KBr) 3444, 2946, 1691, 1242.

3-Oxo-27-hydroxyacetate friedelan-28-oic acid (3): $C_{32}H_{50}$ O₅, amorphous powder, m.p. 233–236 °C, $[\alpha]_D^{22}$ +1.5 (*c* 0.26, MeOH); ESI (positive ion) MS, m/z [M + H]⁺ (515), [M + NH₄]⁺ (532), [M + Na]⁺ (537), [M + K]⁺ (553); IR, ν_{max} (cm⁻¹) (KBr) 3449, 2945, 1712, 1241.

RESULTS AND DISCUSSION

Extraction of the leaves of *C. inophyllum* with AcOEt by silica gel colum chromatography, followed by preparative HPLC and TLC, yielded compounds **1–3**. Structural determinations are based on the NMR spectral assignments, which were confirmed by 2D experiments (gs-COSY, gs-HMQC and gs-HMBC). The ¹H and ¹³C chemical shifts are given in Table 1.

Compound 1 was obtained as a white amorphous solid. The molecular formula $C_{30}H_{50}O_4$ was assigned from the molecular ion at m/z [M + H]⁺ 475 in ESIMS, in combination with its ¹³C NMR data. The ¹³C NMR spectrum gave a total of 30 separated resonances and the DEPT spectrum showed the presence of seven methyls, 12 methylenes, three methines and eight quaternary carbons including two acid carbonyls. Acid functions were also indicated by absorption bands at 1699 and 3448 cm⁻¹ in the IR spectrum.

The spectral features indicated that 1 was a secotriterpene, with the A ring opened, and with two acid carboxylic functions at C-3 and C-28.13,14 With the observations of the C,H correlations in the HMBC and HMQC experiments it was possible to identify 1 as 3,4-secofriedelan-3,28-dioic acid (Table 1). The starting point of the assignment of the ¹H and ¹³C of **1** was the position of the methylene group [CH₂-2 $(\delta_{\rm H} 2.29 \text{ t}, J = 7.0 \text{ Hz}; \delta_{\rm C} 38.93)$], detected through HMBC, by the correlation between H-2 and the carboxylic acid carbon C-3 ($\delta_{\rm C}$ 177.88), the methylene carbon C-1 ($\delta_{\rm C}$ 22.55) and the CH-10 ($\delta_{\rm C}$ 60.83), indicating that **1** has the unit CHCH₂CH₂COOH. Furthermore, the methyl protons at $\delta_{\rm H}$ 0. 81 (t, J = 7.3 Hz) attached to C-23 showed correlations with CH₂-4 (δ_C 37.17) and C-5 (δ_C 38.84), confirming that the A ring is opened. Correlations of other methyl protons furnished the main connectivities of the four rings B-E of the triterpene core: CH₃-24 ($\delta_{\rm H}$ 0.81) with C-4, C-5, C-6 and C-10; CH₃-25 (δ_H 0.89) with C-8, C-9, C-10 and C-11; CH₃-26 $(\delta_{\rm H} 0.82)$ with C-8, C-13, C-14 and C-15; CH₃-27 $(\delta_{\rm H} 1.04)$ with

Table 1.	¹ H and	¹³ C NMR	chemical	shifts	of friedelanes	1–3	(CD ₃ OD)
----------	--------------------	---------------------	----------	--------	----------------	-----	----------------------

Position	1		2		3	
	¹ H	¹³ C	$^{1}\mathrm{H}$	¹³ C	¹ H	¹³ C
1	1.56, m; 1.49, m	22.55	1.58, m; 1.35, m	17.11	1.95, m; 1.66, m	23.42
2	2.29, t	38.93	1.85,dm; 1.49, m	36.20	2.38, td; 2.27,dd	42.20
3	—	177.88	3.67, q	73.10	_	215.94
4	1.37, m; 1.13, m	37.17	1.20, m	50.77	2.37, q	58.99
5	—	38.84	—	39.03	—	43.18
6	1.51, m; 1.20, m	39.96	1.74, m	42.87	1.65, m; 1.32, m	42.00
7	1.40, m; 1.35, m	19.06	1.41, m; 1.33, m	18.77	1.45, m	19.37
8	1.34, m	54.32	1.33, m	54.73	1.47, m	54.39
9	_	40.38	_	38.48	_	38.74
10	0.87, t	60.83	0.89, t	62.71	1.62, m	60.13
11	1.41; 1.26	36.21	1.50, m	37.53	1.50, m	37.46
12	1.45; 1.38	32.01	1.98, dm; 1.35, m	26.18	2.02, m; 1.41, m	26.04
13	_	38.84	_	39.36	_	39.26
14	_	39.96	_	43.83	_	43.83
15	1.43, m; 1.19, m	33.83	1.50, m; 1.15, m	32.71	1.55 m; 1.18, m	32.76
16	2.34, dd; 1.69	30.82	1.45, m	37.13	1.46, m	37.18
17	_	45.84	_	45.85	_	45.95
18	2.44, dd	39.09	2.49, dd	39.52	2.54, dd	39.47
19	1.41, m; 1.18, m	35.97	1.60, m; 1.17, m	36.79	1.50, m; 1.18, m	36.83
20	_	29.40	_	29.25	_	29.27
21	1.42, m; 1.27, m	33.66	1.20, m	33.59	1.32, m; 1.20, m	33.60
22	1.49, m; 1.38, m	37.10	2.47, dd; 1.60, m	30.73	2.50, dd; 1.61, m	30.78
23	0.81, t	7.94	0.91, d	12.15	0.83, d	7.13
24	0.81, s	19.89	0.96, s	16.92	0.72, s	15.01
25	0.89, s	18.11	0.92, s	18.49	0.94, s	18.07
26	0.82, s	21.27	0.88, s	21.98	0.91, s	22.15
27	1.04, s	19.14	4.48, d	66.33	4.53, d	66.25
			4.43, d		4.48, d	
28	_	182.69	_	182.18	_	183.81
29	1.03, s	30.31	1.03, s	29.94	1.03, s	29.99
30	0.93, s	35.03	0.90, s	35.00	0.90, s	35.03
CO	_	_	_	173.08	_	173.08
CH ₃	_	_	2.04, s	21.22	2.05, s	21.51

C-12, C-13, C-14 and C-18; CH₃-29 ($\delta_{\rm H}$ 1.03) and CH₃-30 ($\delta_{\rm H}$ 0.93) with C-19, C-20 and C-21. Finally, the signal at $\delta_{\rm H}$ 2.44, attributed to the CH-18 group, showed correlation with the second carboxylic group C-28. Scheme 2(a) shows the significant two- and three-bond ¹³C–¹H correlations observed in the HMBC spectrum. The above information allowed us to establish the structure of **1** as 3,4-secofriedelan-3,28-dioic acid.

Compound **2** was obtained as a white amorphous solid. The molecular formula was deduced to be $C_{32}H_{52}O_5$ by a combination of ¹³C NMR, DEPT (8 C, 5 CH, 12 CH₂ and 7 CH₃) and ESIMS data. The IR spectrum displayed absorption bands at 1702 and 3400 cm⁻¹ due, to carbonyl and hydroxyl groups, respectively. In the ¹³C NMR spectrum the low-field resonances at δ_C 182.18 and 173.08 suggested the presence of two carbonyl groups. Two oxygenated carbons were located at δ_C 73.10 (CH) and 66.33 (CH₂). Moreover, ¹H and ¹³C NMR data revealed the presence of an acetate function (δ_C 173.08, 21.22; δ_H 2.04). The tertiary methyl (δ_C 12.15; δ_H 0.91, J = 6.3 Hz) suggested a friedelane skeleton for this compound.⁸ Structural and spectral assignments of 2 were then achieved by the concerted application of gs-COSY, gs-HMBC and gs-HMQC experiments. The key observations from the HMBC spectrum were the correlations from the ¹H methyl signals: CH₃-23 ($\delta_{\rm H}$ 0.91) with C-3, C-4 and C-5; CH_3 -24 (δ_H 0.96) with C-4, C-5, C-6 and C-10; CH_3 -25 (δ_H 0.92) with C-8, C-9, C-10 and C-11; CH₃-26 (δ_H 0.88) with C-8, C-13, C-14 and C-15; CH₃-29 ($\delta_{\rm H}$ 1.03) and CH₃-30 ($\delta_{\rm H}$ 0.90) with C-19, C-20 and C-21. Moreover, the diastereotopic methylene protons assigned to C-27 showed ²J and ³J correlation peaks with C-12, C-13, C-14 and C-18. Further analysis of the HMBC spectrum indicated the linkage of an acetate group at C-27. Finally, concerted analysis using COSY, HMQC and HMBC spectra furnished the other ¹H and ¹³C chemical shifts of 2. The structure of 2 therefore be established as 27hydroxyacetate canophyllic acid [Table 1 and Scheme 2(b)].

The molecular formula for 3 was found to be $C_{32}H_{50}O_5$ by a combination of ^{13}C NMR (32 carbons), DEPT (9 C, 4

Scheme 2. Partial HMBC correlations (H \rightarrow C) for (a) 3,4-secofriedelan-3,28-dioic acid (1) and (b) 27-Hydroxyacetate canophyllic acid (2).

CH, 12 CH₂ and 7 CH₃) and ESIMS data. The IR spectrum of **3** displayed characteristic bands for a hydroxyl group

(3420 cm⁻¹) and carbonyl functions (1755 cm⁻¹). The ¹H and ¹³C NMR data of **3** are very close to those of **2**. However, in contrast to **2**, the ¹³C NMR spectrum of **3** shows a carbonyl function at $\delta_{\rm C}$ 215.94, which was assigned to C-3 on the basis on long-range correlation peaks with H-23. The complete ¹H and ¹³C assignment (Table 1) established the structure of **3** as 3-oxo-27-hydroxyacetate friedelan-28-oic acid.

Acknowledgements

The authors are grateful to the Ministère de la Recherche de la Polynésie Française for financial support (Contrat de Developpement Etat/Territoire 2001–2003) and the CRSM (Centre Régional de Spectrométrie de Masse, Marseille) for obtaining mass spectra.

REFERENCES

- 1. Stevens PF. A Revision of the World Species of the Callophyllum (Guttiferae). Journal of the Arnold Arboretum 1980; **61**: 117.
- 2. Pétard P. In *Les Plantes Utiles de la Polynésie-Raau Tahiti,* Editions Haere pono Tahiti: Papeete 1986; 225.
- Govindachari TR, Viswanathan N, Pai BR, Rao UR, Srinivasan M. Tetrahedron 1967; 23: 1901.
- 4. Günther H. La Spectroscopie de RMN. Masson: Paris, 1994; 60.
- 5. Hurd RE. J. Magn. Reson. 1990; 87: 422.
- 6. Hurd RE, John BK. J. Magn. Reson. 1991; 91: 648.
- Wilker W, Leibfritz D, Kerssebaum R, Bermel W. Magn. Reson. Chem. 1993; 31: 287.
- 8. Patra A, Chaudhuri SK. Magn. Reson. Chem. 1987; 25: 95.
- 9. Akihisha T, Yamamoto K, Tamura T, Kumura Y, Iida T, Nambara T, Chang FC. *Chem. Pharm. Bull.* 1992; **40**: 789.
- 10. Anjaneylu ASR, Narayana Rao M. Phytochemistry 1980; 19: 1163.
- Prakash O, Roy R, Garg HS, Bhakuni DS. Magn. Reson. Chem. 1987: 25: 39.
- Nozaki H, Matsuura Y, Hirono S, Kasai R, Chang JJ, Lee KH. J. Nat. Prod. 1990; 53: 1039.
- 13. Leong YW, Harrison LJ, Phytochemistry 1999; 50: 849.
- Viera Filho SA, Duarte LP, Silva GDF, Lula IS, dos Santos MH. Magn. Reson. Chem. 2001; 39: 716.